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What is Clustering?

@ Unsupervised Learning: No predefined
labels

Objective: Group similar data points

Clustered Data
(Unsupervised Learning) (Similar Points Grouped)

Core Principle: Maximize intra-cluster ) " £
similarity, minimize inter-cluster similarity

Applications: PP
o Customer segmentation i « o % * o
e Image compression . Tt ot e
e Gene analysis
e Document organization
e Anomaly detection
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Distance Metrics and Similarity

Euclidean Distance:

d(X7y) =

Euclidean Distance Manhattan Distance
(L2 Norm) (L1 Norm)

— = Euclidean: \20= 447 — Manhattan: 4426

Intra-Cluster Distance:
@ Distance within cluster : e :
@ Should be minimized ’ -

@ Indicates compactness

Inter-Cluster Distance:
@ Distance between clusters
@ Should be maximized

@ Indicates separation
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Clustering Challenges

Optimal k: How many clusters?
Initialization: Different starting points
Scalability: Large datasets

Outliers: Noise distortion

Feature Scaling: Normalization needed

Cluster Shapes: Spherical assumption .
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Determining Optimal k: The Elbow Method

The Logic:
@ As k increases, Inertia decreases
@ Look for the "Elbow" point

@ Point of diminishing returns

@ Validate with Silhouette Score

Inertia Formula:

k
=300 =il

i=1 xe(;
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k-Means: Algorithm Overview

Core Concept: Partition data into k clusters
through iterative centroid optimization & @

Algorithm Steps:
@ Initialize: Random k centroids

@ Assign: Points to nearest centroid

© Update: Recalculate centroids
@ Repeat: Until convergence . S - &

Convergence: Centroids stabilize

&
f
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k-Means+-: Smart Initialization

The Problem with Random Initialization:
@ Standard k-Means can converge to poor local minima
@ Random centroid placement may require many iterations
@ Results can be inconsistent across runs

The k-Means++ Solution:
© Choose first centroid uniformly at random from data points

@ For each remaining centroid, choose a point with probability proportional to D(x)?
© Where D(x) is the distance to the nearest existing centroid

Benefits:

o Faster convergence: Typically 2-3x fewer iterations
o Better results: Avoids poor local minima

o Default in Scikit-Learn: Used automatically in modern implementations
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k-Means: Mathematical Foundation

Objective Function (Inertia):

k
J=> > lx—nil?

i=1 xe(;

Where:
@ C; = Set of points in cluster i
@ u; = Centroid (mean) of cluster i
@ k = Number of clusters
o ||x — pil|?> = Squared Euclidean distance

Centroid Update Rule:

(t+1

X
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k-Means: Strengths and Limitations

@ Strengths:
o Fast and efficient
e Simple to implement
e Scales well
e Guaranteed convergence
o Widely available

Algorithm Comparison: Strengths vs Limitations

Score (110)

o Limitations:

e Requires predefined k
Initialization sensitive
Local minima . —
Outlier sensitive
Assumes spherical clusters
Needs normalization

vorgence Intorprotabity Flenbity
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k-Means: Computational Complexity

Time Complexity:
O(n-k-d-i)
Where:
@ n = Number of data points
@ k = Number of clusters
@ d = Number of dimensions

e i = Number of iterations (typically 10-20)
Space Complexity: O(n-d + k - d)

Practical Note: Usually converges in 10-20 iterations, making it very efficient
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Hierarchical Clustering: Two Approaches

Agglomerative (Bottom-Up):
@ Start with individual points
@ Merge closest clusters
@ Build tree from bottom up B ‘ S
@ Most common approach

@ Uses linkage methods i I

Divisive (Top-Down):

Start with all points together

Recursively split clusters

Output: Dendrogram (tree structure)

Build tree from top down
@ Less commonly used

@ More expensive
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Hierarchical Clustering: Linkage Methods

How to Measure Distance Between
Clusters?

Single Linkage:
@ Uses minimum distance

@ Creates chain-like clusters

@ Sensitive to outliers _j

Ward Linkage:
@ Minimizes within-cluster variance
@ Creates balanced clusters
@ Often produces best results

@ Recommended in practice
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Hierarchical Clustering: Strengths and Limitations

Limitations:
Strengths: £ e O
@ No predefined k needed ® Expensive O(n”)
. @ Cannot undo merges
@ Dendrogram interpretable

. . @ Linkage sensitive
@ Flexible selection g -
N @ Poor scalability
@ Deterministic results Ol
) ° n<) memor
@ Reveals hierarchy ( ) . .y
@ Outlier sensitive
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Hierarchical Clustering: Computational Complexity

Time Complexity:
O(n?log n) to O(n®)

Depends on linkage method and implementation
Space Complexity: O(n?) for distance matrix

Practical Limitations:
@ Suitable for datasets with fewer than 10,000 points
@ Requires storing complete distance matrix in memory
@ Not recommended for real-time applications

o Better suited for exploratory data analysis
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k-Means vs. Hierarchical Clustering

Criterion k-Means Hier.
Time O(nkdi) | O(n%logn)
Space O(nd+kd) 0(n?)
Predefined k Yes No
Dendrogram No Yes
Scalability High Low
Interpret. Medium High
Deterministic No Yes

Key Trade-off: Speed vs. Interpretability
@ k-Means: Fast but less interpretable
@ Hierarchical: Slower but more interpretable
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When to Use Each Algorithm

Use k-Means When:

@ You have a large dataset (more than 10,000 points)
You know the desired number of clusters
Speed and efficiency are priorities

You need real-time clustering

Computational resources are limited

Use Hierarchical Clustering When:

@ You want to explore cluster structure
The number of clusters is unknown
You need interpretable results

You have a small to medium dataset

Understanding relationships is important
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Practical Applications

k-Means Applications:

@ Customer segmentation for marketing campaigns
Image compression and color quantization
Document clustering and topic modeling
Recommendation systems

Network traffic anomaly detection

Hierarchical Clustering Applications:

@ Gene sequence analysis and phylogenetics
Document classification and organization
Exploratory data analysis

Taxonomy and hierarchy creation

Social network community detection
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When k-Means Fails: Non-Spherical Clusters

When k-Means Fails: Non-Spherical Clusters

Moon Shapes k-Means Result

Hierarchical Result
(True Structure) FAILS WORKS
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Lesson: Always visualize data first. Consider alternatives like DBSCAN for non-spherical clusters.
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Key Discussion Question

How would you select the most appropriate clustering algorithm
for a specific real-world application?

Critical Considerations:
@ Dataset size and dimensionality
Whether the number of clusters is known
Trade-off between speed and interpretability

o
o
o Expected cluster shapes and sizes
@ Available computational resources
o

Need for hierarchical structure understanding
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Summary and Key Takeaways

Clustering is a fundamental unsupervised learning technique
k-Means: Fast, efficient, scalable, but requires predefined k
Hierarchical: Flexible, interpretable, but computationally expensive
Algorithm Selection depends on specific application requirements
Both Methods are valuable and often complementary

Data Preprocessing (scaling, normalization) is crucial

Validation Metrics (silhouette score) assess quality

Hybrid Approaches: Use hierarchical for exploration, then k-Means for final clustering

Thank you for your attention!
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Questions?

Feel free to ask about any aspect of the presentation!
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Thank You!

Thank you for your attention!
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