

Clustering Algorithms

k-Means and Hierarchical Clustering

Md Amanullah
Matrikelnummer: 5466324
CS2356

Machine Learning
Supervisor: Herr Cemic

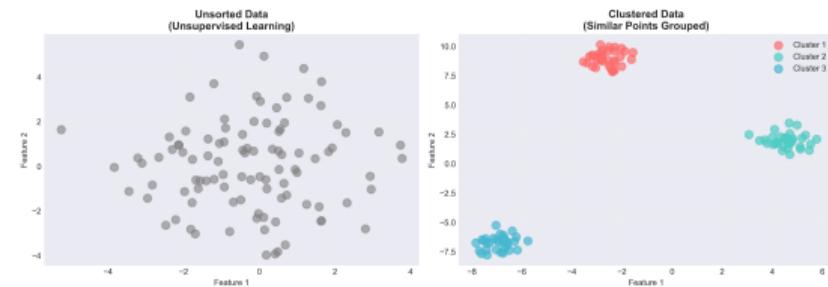
January 13, 2026

Table of Contents

- 1 Introduction to Clustering
- 2 k-Means Algorithm
- 3 Hierarchical Clustering
- 4 Algorithm Comparison
- 5 Algorithm Visualizations
- 6 Discussion and Conclusion
- 7 Bibliography

What is Clustering?

- **Unsupervised Learning:** No predefined labels
- **Objective:** Group similar data points
- **Core Principle:** Maximize intra-cluster similarity, minimize inter-cluster similarity
- **Applications:**
 - Customer segmentation
 - Image compression
 - Gene analysis
 - Document organization
 - Anomaly detection



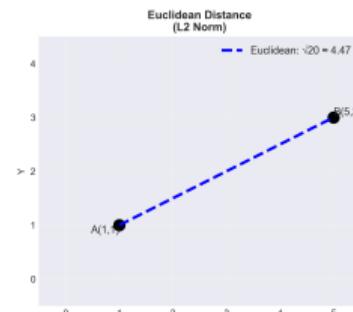
Distance Metrics and Similarity

Euclidean Distance:

$$d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Intra-Cluster Distance:

- Distance within cluster
- Should be **minimized**
- Indicates compactness

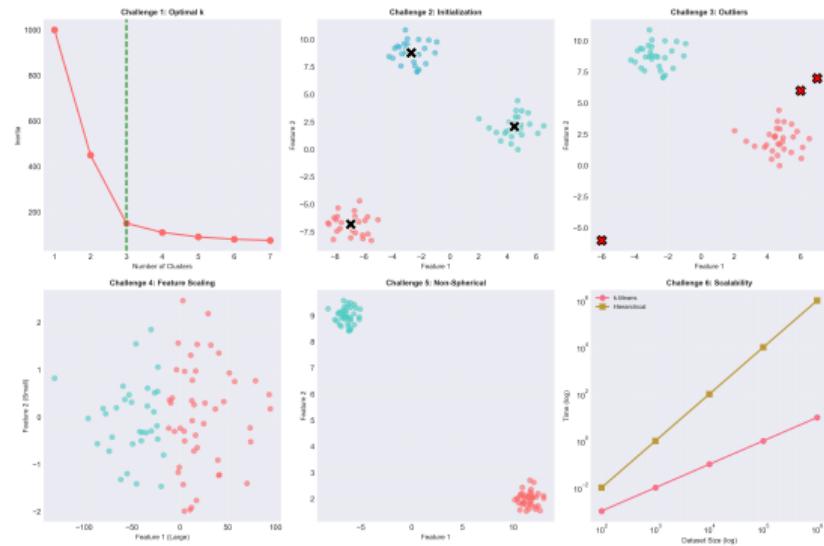


Inter-Cluster Distance:

- Distance between clusters
- Should be **maximized**
- Indicates separation

Clustering Challenges

- **Optimal k:** How many clusters?
- **Initialization:** Different starting points
- **Scalability:** Large datasets
- **Outliers:** Noise distortion
- **Feature Scaling:** Normalization needed
- **Cluster Shapes:** Spherical assumption



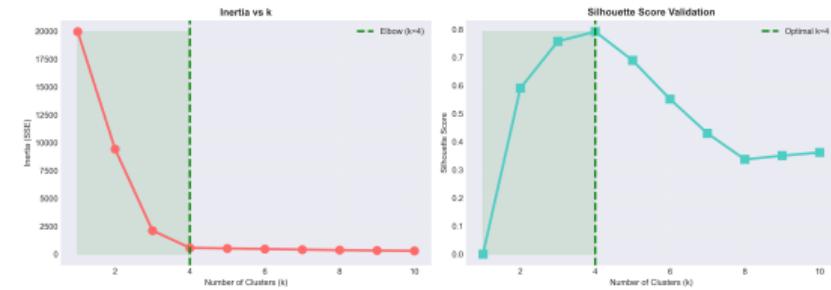
Determining Optimal k : The Elbow Method

The Logic:

- As k increases, Inertia decreases
- Look for the "Elbow" point
- Point of diminishing returns
- Validate with Silhouette Score

Inertia Formula:

$$J = \sum_{i=1}^k \sum_{x \in C_i} \|x - \mu_i\|^2$$



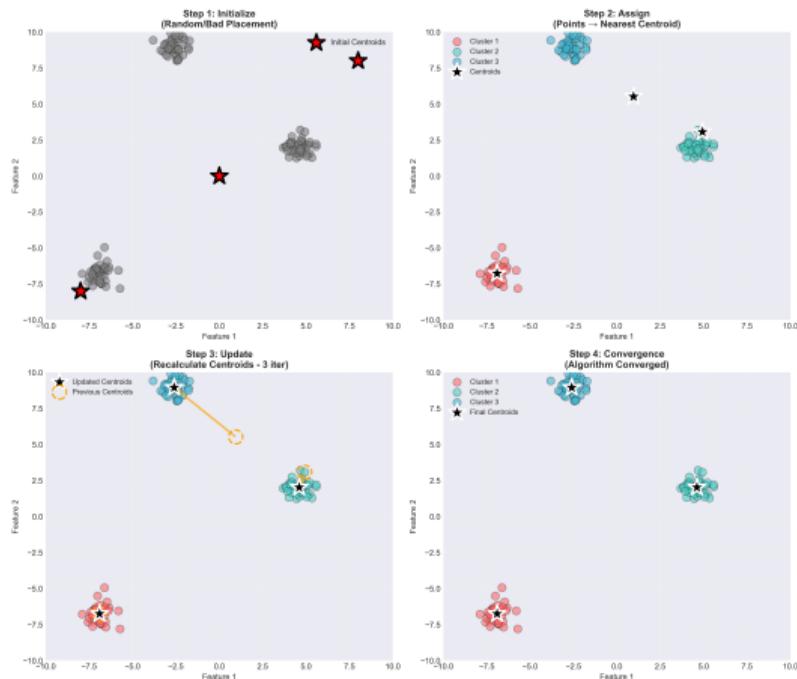
k-Means: Algorithm Overview

Core Concept: Partition data into k clusters through iterative centroid optimization

Algorithm Steps:

- ① **Initialize:** Random k centroids
- ② **Assign:** Points to nearest centroid
- ③ **Update:** Recalculate centroids
- ④ **Repeat:** Until convergence

Convergence: Centroids stabilize



k-Means++: Smart Initialization

The Problem with Random Initialization:

- Standard k-Means can converge to poor local minima
- Random centroid placement may require many iterations
- Results can be inconsistent across runs

The k-Means++ Solution:

- ① Choose first centroid uniformly at random from data points
- ② For each remaining centroid, choose a point with probability proportional to $D(x)^2$
- ③ Where $D(x)$ is the distance to the nearest existing centroid

Benefits:

- **Faster convergence:** Typically 2-3x fewer iterations
- **Better results:** Avoids poor local minima
- **Default in Scikit-Learn:** Used automatically in modern implementations

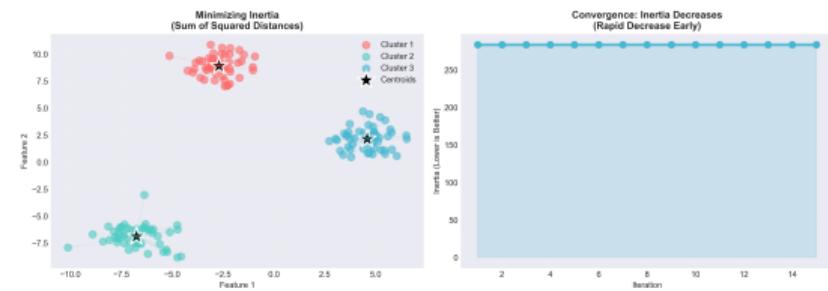
k-Means: Mathematical Foundation

Objective Function (Inertia):

$$J = \sum_{i=1}^k \sum_{x \in C_i} \|x - \mu_i\|^2$$

Where:

- C_i = Set of points in cluster i
- μ_i = Centroid (mean) of cluster i
- k = Number of clusters
- $\|x - \mu_i\|^2$ = Squared Euclidean distance



Centroid Update Rule:

$$\mu_i^{(t+1)} = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

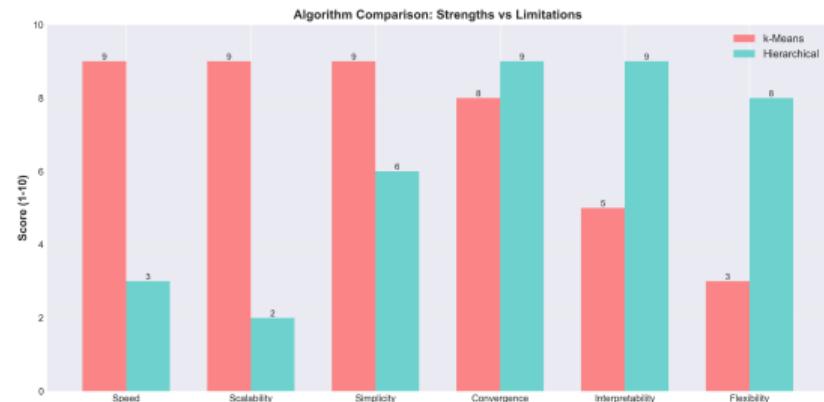
k-Means: Strengths and Limitations

- **Strengths:**

- Fast and efficient
- Simple to implement
- Scales well
- Guaranteed convergence
- Widely available

- **Limitations:**

- Requires predefined k
- Initialization sensitive
- Local minima
- Outlier sensitive
- Assumes spherical clusters
- Needs normalization



k-Means: Computational Complexity

Time Complexity:

$$O(n \cdot k \cdot d \cdot i)$$

Where:

- n = Number of data points
- k = Number of clusters
- d = Number of dimensions
- i = Number of iterations (typically 10-20)

Space Complexity: $O(n \cdot d + k \cdot d)$

Practical Note: Usually converges in 10-20 iterations, making it very efficient

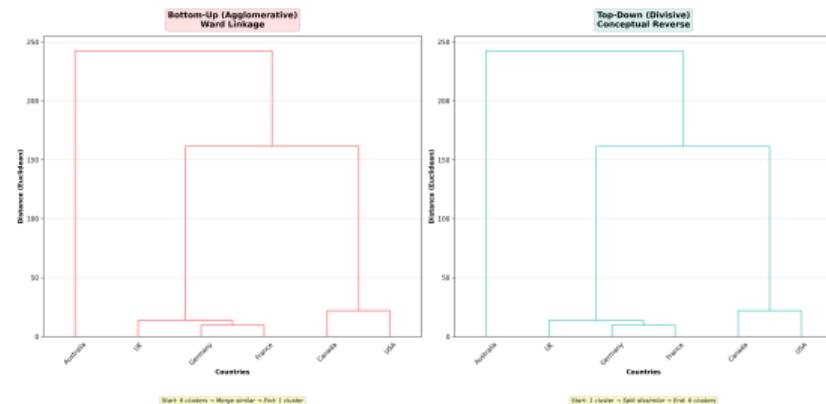
Hierarchical Clustering: Two Approaches

Agglomerative (Bottom-Up):

- Start with individual points
- Merge closest clusters
- Build tree from bottom up
- Most common approach
- Uses linkage methods

Divisive (Top-Down):

- Start with all points together
- Recursively split clusters
- Build tree from top down
- Less commonly used
- More expensive



Output: Dendrogram (tree structure)

Hierarchical Clustering: Linkage Methods

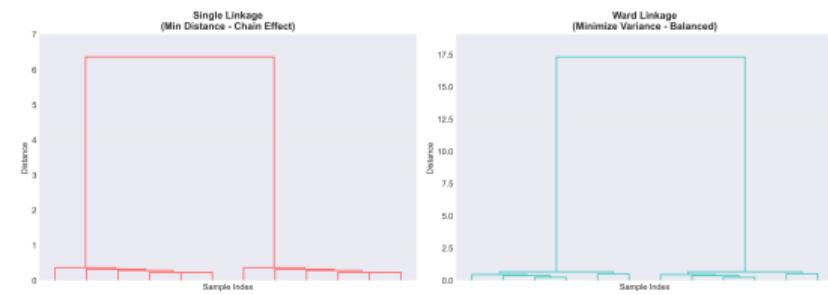
How to Measure Distance Between Clusters?

Single Linkage:

- Uses minimum distance
- Creates chain-like clusters
- Sensitive to outliers

Ward Linkage:

- Minimizes within-cluster variance
- Creates balanced clusters
- Often produces best results
- Recommended in practice



Hierarchical Clustering: Strengths and Limitations

Strengths:

- No predefined k needed
- Dendrogram interpretable
- Flexible selection
- Deterministic results
- Reveals hierarchy

Limitations:

- Expensive $O(n^2)$
- Cannot undo merges
- Linkage sensitive
- Poor scalability
- $O(n^2)$ memory
- Outlier sensitive

Hierarchical Clustering: Computational Complexity

Time Complexity:

$$O(n^2 \log n) \text{ to } O(n^3)$$

Depends on linkage method and implementation

Space Complexity: $O(n^2)$ for distance matrix

Practical Limitations:

- Suitable for datasets with fewer than 10,000 points
- Requires storing complete distance matrix in memory
- Not recommended for real-time applications
- Better suited for exploratory data analysis

k-Means vs. Hierarchical Clustering

Criterion	k-Means	Hier.
Time	$O(nkdi)$	$O(n^2 \log n)$
Space	$O(nd+kd)$	$O(n^2)$
Predefined k	Yes	No
Dendrogram	No	Yes
Scalability	High	Low
Interpret.	Medium	High
Deterministic	No	Yes

Key Trade-off: Speed vs. Interpretability

- k-Means: Fast but less interpretable
- Hierarchical: Slower but more interpretable

When to Use Each Algorithm

Use k-Means When:

- You have a large dataset (more than 10,000 points)
- You know the desired number of clusters
- Speed and efficiency are priorities
- You need real-time clustering
- Computational resources are limited

Use Hierarchical Clustering When:

- You want to explore cluster structure
- The number of clusters is unknown
- You need interpretable results
- You have a small to medium dataset
- Understanding relationships is important

Practical Applications

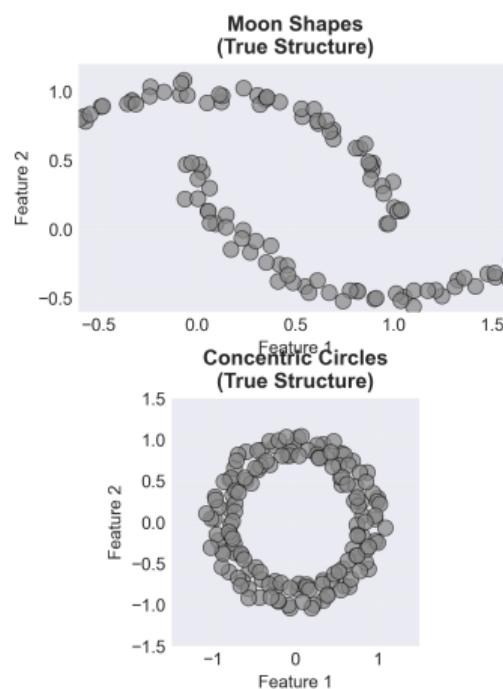
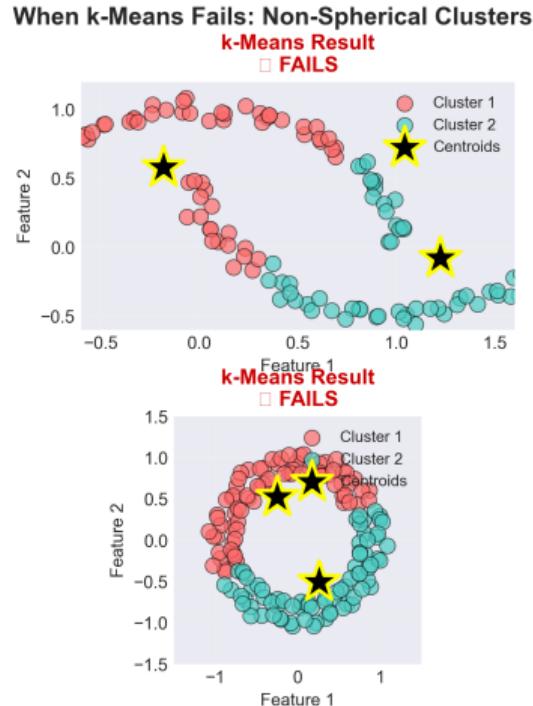
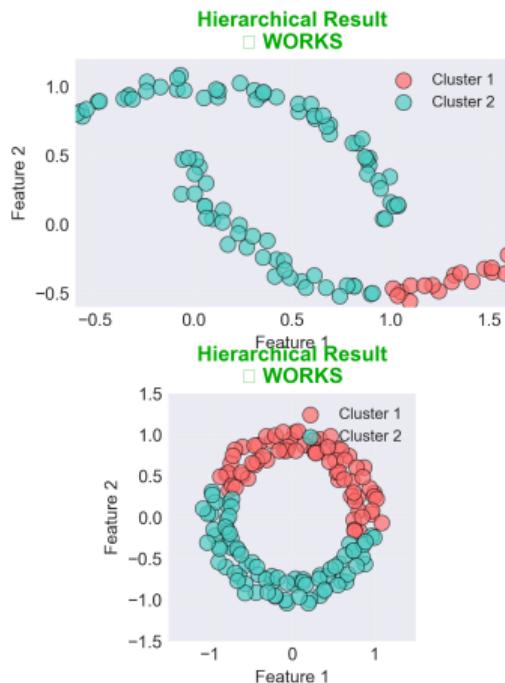
k-Means Applications:

- Customer segmentation for marketing campaigns
- Image compression and color quantization
- Document clustering and topic modeling
- Recommendation systems
- Network traffic anomaly detection

Hierarchical Clustering Applications:

- Gene sequence analysis and phylogenetics
- Document classification and organization
- Exploratory data analysis
- Taxonomy and hierarchy creation
- Social network community detection

When k-Means Fails: Non-Spherical Clusters



Lesson: Always visualize data first. Consider alternatives like DBSCAN for non-spherical clusters.

How would you select the most appropriate clustering algorithm for a specific real-world application?

Critical Considerations:

- Dataset size and dimensionality
- Whether the number of clusters is known
- Trade-off between speed and interpretability
- Expected cluster shapes and sizes
- Available computational resources
- Need for hierarchical structure understanding

Summary and Key Takeaways

- **Clustering** is a fundamental unsupervised learning technique
- **k-Means**: Fast, efficient, scalable, but requires predefined k
- **Hierarchical**: Flexible, interpretable, but computationally expensive
- **Algorithm Selection** depends on specific application requirements
- **Both Methods** are valuable and often complementary
- **Data Preprocessing** (scaling, normalization) is crucial
- **Validation Metrics** (silhouette score) assess quality
- **Hybrid Approaches**: Use hierarchical for exploration, then k-Means for final clustering

Thank you for your attention!

Questions?

Questions?

Feel free to ask about any aspect of the presentation!

Sources and References I

MacQueen, J. (1967). "Some methods for classification and analysis of multivariate observations." *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability*, 1, 281-297.

Ward Jr., J. H. (1963). "Hierarchical grouping to optimize an objective function." *Journal of the American Statistical Association*, 58(301), 236-244.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction* (2nd ed.). Springer.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). "Data clustering: A review." *ACM Computing Surveys*, 31(3), 264-323.

Kaufman, L., & Rousseeuw, P. J. (1990). *Finding Groups in Data: An Introduction to Cluster Analysis*. Wiley.

Pedregosa, F., et al. (2011). "Scikit-learn: Machine Learning in Python." *Journal of Machine Learning Research*, 12, 2825-2830.

Thank You!

Thank you for your attention!

Md Amanullah (5466324)

Machine Learning - CS2356